MRCTF-2020-crypto

主办方天璇是想弄成一个校内小比赛但无奈资料流出。。。
(持续更新)

baby_RSA

源码:建议复制到ide中

import sympy
import random
from gmpy2 import gcd, invert
from Crypto.Util.number import getPrime, isPrime, getRandomNBitInteger, bytes_to_long, long_to_bytes
from z3 import *
flag = b"MRCTF{xxxx}"
base = 65537

def GCD(A):
    B = 1
    for i in range(1, len(A)):
        B = gcd(A[i-1], A[i])
    return B

def gen_p():
    P = [0 for i in range(17)]
    P[0] = getPrime(128) //随机生成素数 占 128 个 bit
    for i in range(1, 17):
        P[i] = sympy.nextprime(P[i-1])
    print("P_p :", P[9])
    n = 1
    for i in range(17):
        n *= P[i]
    p = getPrime(1024)
    factor = pow(p, base, n) //(p ** base) % n 
    print("P_factor :", factor)
    return sympy.nextprime(p)  //取下一个素数

def gen_q():
    sub_Q = getPrime(1024)
    Q_1 = getPrime(1024)
    Q_2 = getPrime(1024)
    Q = sub_Q ** Q_2 % Q_1
    print("Q_1: ", Q_1)
    print("Q_2: ", Q_2)
    print("sub_Q: ", sub_Q)
    return sympy.nextprime(Q)

if __name__ == "__main__":
    _E = base
    _P = gen_p()
    _Q = gen_q()
    assert (gcd(_E, (_P - 1) * (_Q - 1)) == 1)
    _M = bytes_to_long(flag)
    _C = pow(_M, _E, _P * _Q)
    print("Ciphertext = ", _C)
'''
P_p : 206027926847308612719677572554991143421
P_factor : 213671742765908980787116579976289600595864704574134469173111790965233629909513884704158446946409910475727584342641848597858942209151114627306286393390259700239698869487469080881267182803062488043469138252786381822646126962323295676431679988602406971858136496624861228526070581338082202663895710929460596143281673761666804565161435963957655012011051936180536581488499059517946308650135300428672486819645279969693519039407892941672784362868653243632727928279698588177694171797254644864554162848696210763681197279758130811723700154618280764123396312330032986093579531909363210692564988076206283296967165522152288770019720928264542910922693728918198338839

Q_1:  103766439849465588084625049495793857634556517064563488433148224524638105971161051763127718438062862548184814747601299494052813662851459740127499557785398714481909461631996020048315790167967699932967974484481209879664173009585231469785141628982021847883945871201430155071257803163523612863113967495969578605521
Q_2:  151010734276916939790591461278981486442548035032350797306496105136358723586953123484087860176438629843688462671681777513652947555325607414858514566053513243083627810686084890261120641161987614435114887565491866120507844566210561620503961205851409386041194326728437073995372322433035153519757017396063066469743
sub_Q:  168992529793593315757895995101430241994953638330919314800130536809801824971112039572562389449584350643924391984800978193707795909956472992631004290479273525116959461856227262232600089176950810729475058260332177626961286009876630340945093629959302803189668904123890991069113826241497783666995751391361028949651
Ciphertext =  1709187240516367141460862187749451047644094885791761673574674330840842792189795049968394122216854491757922647656430908587059997070488674220330847871811836724541907666983042376216411561826640060734307013458794925025684062804589439843027290282034999617915124231838524593607080377300985152179828199569474241678651559771763395596697140206072537688129790126472053987391538280007082203006348029125729650207661362371936196789562658458778312533505938858959644541233578654340925901963957980047639114170033936570060250438906130591377904182111622236567507022711176457301476543461600524993045300728432815672077399879668276471832
'''

题目没有直接说明P、Q,但是是可以轻松算出来的。
先分析P是生成,已知P_factor P_p ,可以往前推出p[0],进而推出 n 再解一个多素因子RSA就可以得到 P。Q 就更简单了,取一个逆模就ok了
exp:

import sympy
import random
from libnum import gcd, invmod 
from Crypto.Util.number import *
from z3 import *
base = 65537
Ciphertext =  1709187240516367141460862187749451047644094885791761673574674330840842792189795049968394122216854491757922647656430908587059997070488674220330847871811836724541907666983042376216411561826640060734307013458794925025684062804589439843027290282034999617915124231838524593607080377300985152179828199569474241678651559771763395596697140206072537688129790126472053987391538280007082203006348029125729650207661362371936196789562658458778312533505938858959644541233578654340925901963957980047639114170033936570060250438906130591377904182111622236567507022711176457301476543461600524993045300728432815672077399879668276471832
P_factor =213671742765908980787116579976289600595864704574134469173111790965233629909513884704158446946409910475727584342641848597858942209151114627306286393390259700239698869487469080881267182803062488043469138252786381822646126962323295676431679988602406971858136496624861228526070581338082202663895710929460596143281673761666804565161435963957655012011051936180536581488499059517946308650135300428672486819645279969693519039407892941672784362868653243632727928279698588177694171797254644864554162848696210763681197279758130811723700154618280764123396312330032986093579531909363210692564988076206283296967165522152288770019720928264542910922693728918198338839
p9 = 206027926847308612719677572554991143421
n = 0
while n<9:
    p9 -=2
    if isPrime(p9):n+=1
p0 = p9
n = 1
phi_1 = 1
for i in range(17):
    n *= p0
    phi_1 *= p0-1
    #print(p0)
    p0 = sympy.nextprime(p0)
# rsa1
d_1 = invmod(base,phi_1)
m_1 = pow(P_factor,d_1,n)
p = sympy.nextprime(m_1) # 质数p
Q_1=103766439849465588084625049495793857634556517064563488433148224524638105971161051763127718438062862548184814747601299494052813662851459740127499557785398714481909461631996020048315790167967699932967974484481209879664173009585231469785141628982021847883945871201430155071257803163523612863113967495969578605521
Q_2=151010734276916939790591461278981486442548035032350797306496105136358723586953123484087860176438629843688462671681777513652947555325607414858514566053513243083627810686084890261120641161987614435114887565491866120507844566210561620503961205851409386041194326728437073995372322433035153519757017396063066469743
sub_Q=168992529793593315757895995101430241994953638330919314800130536809801824971112039572562389449584350643924391984800978193707795909956472992631004290479273525116959461856227262232600089176950810729475058260332177626961286009876630340945093629959302803189668904123890991069113826241497783666995751391361028949651
q = sympy.nextprime(pow(sub_Q,Q_2,Q_1)) # 质数q

e = 65537
n = q*p
phi_2 = (q-1)*(p-1)
d_2 = invmod(e,phi_2)
m = pow(Ciphertext,d_2,n)
print((hex(m)))
print(long_to_bytes(m))
flag=''
while m>0:
    flag += chr(m & 0xff)
    m = m >> 8
print(flag[::-1]) 
a=inverse(2,5)
print(a)
暂无评论

发送评论 编辑评论


				
上一篇
下一篇